Cell division resets polarity and motility for the bacterium Myxococcus 1 xanthus
نویسندگان
چکیده
3 Running title: Myxococcus xanthus cell division resets polarity 4 5 Cameron W. Harvey, Chinedu S. Madukoma, Shant Mahserejian, Mark S. Alber, 6 Joshua D. Shrout 7 Department of Applied and Computational Mathematics and Statistics, University of Notre 8 Dame, Notre Dame, IN, 46556; USA 9 Department of Physics, University of Notre Dame, Notre Dame, IN, 46556; USA 10 Department of Civil and Environmental Engineering and Earth Sciences, University of Notre 11 Dame, Notre Dame, IN, 46556; USA 12 Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202; USA 13 Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556; USA 14 15 for correspondence: [email protected] 16 17 BYLINE: 18 Cell division cues Myxococcus xanthus progeny to move in opposing directions, which 19 involves asymmetric distribution of the G-protein RomR. 20 21 22 23 JB Accepts, published online ahead of print on 25 August 2014 J. Bacteriol. doi:10.1128/JB.02095-14 Copyright © 2014, American Society for Microbiology. All Rights Reserved.
منابع مشابه
Cell division resets polarity and motility for the bacterium Myxococcus xanthus.
Links between cell division and other cellular processes are poorly understood. It is difficult to simultaneously examine division and function in most cell types. Most of the research probing aspects of cell division has experimented with stationary or immobilized cells or distinctly asymmetrical cells. Here we took an alternative approach by examining cell division events within motile groups...
متن کاملMglC, a Paralog of Myxococcus xanthus GTPase-Activating Protein MglB, Plays a Divergent Role in Motility Regulation
UNLABELLED In order to optimize interactions with their environment and one another, bacteria regulate their motility. In the case of the rod-shaped cells of Myxococcus xanthus, regulated motility is essential for social behaviors. M. xanthus moves over surfaces using type IV pilus-dependent motility and gliding motility. These two motility systems are coordinated by a protein module that contr...
متن کاملA Dynamic Response Regulator Protein Modulates G-Protein–Dependent Polarity in the Bacterium Myxococcus xanthus
Migrating cells employ sophisticated signal transduction systems to respond to their environment and polarize towards attractant sources. Bacterial cells also regulate their polarity dynamically to reverse their direction of movement. In Myxococcus xanthus, a GTP-bound Ras-like G-protein, MglA, activates the motility machineries at the leading cell pole. Reversals are provoked by pole-to-pole s...
متن کاملCoupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus
Myxococcus xanthus cells harbor two motility machineries, type IV pili (Tfp) and the A-engine. During reversals, the two machineries switch polarity synchronously. We present a mechanism that synchronizes this polarity switching. We identify the required for motility response regulator (RomR) as essential for A-motility. RomR localizes in a bipolar, asymmetric pattern with a large cluster at th...
متن کامل